
World Transactions on Engineering and Technology Education © 2006 UICEE
Vol.5, No.1, 2006

 183

INTRODUCTION

Almost every engineering design problem can be formulated as
an optimisation problem. Solving an optimisation problem
requires the computation of the global maxima or minima of
the object function. Obviously, reaching this goal makes the
search process complicated and the selection of an optimum
technique critical. It is a challenge for engineers to design
efficient and cost-effective systems without compromising the
integrity of the system. The conventional design process
depends upon the designer’s intuition, experience and skill.

Many optimisation algorithms have been developed and
adapted for various problems. Methods to solve the general
optimisation problem have been studied for many years and
considerable literature exists [1][2]. Engineering optimal
design studies can often be cast in terms of optimisation
problems. However, for such an approach to be worthwhile,
designers must be content that the optimisation techniques
employed converge fast. In this article, the author describes
recent convergence problem studies found when applying the
particle swarm optimisation algorithm to those optimisation
problems often found in design. The particle swarm
optimisation algorithm has exhibited good function
optimisation performance. Particle swarm optimisation is an
invented high performance optimiser that is very easy to
understand and implement. It is similar, in some ways, to
genetic algorithms, but requires less computational
bookkeeping and generally only a few lines of code [3].

OPTIMUM DESIGN PROBLEM FORMULATION

The aim of the optimum design course is to identify the best
possible combination of solutions for use as design parameters
in order to maximise or minimise an optimisation function. In
this course, it is generally assumed that various preliminary
analyses have been completed and a detailed design concept or

sub-problem must be carried out. Students should bear in mind
that a considerable number of analyses have to be performed
before reaching this design optimisation problem stage.

This must be stressed because the optimum solution will only
be as good as the formulation. Once the problem is properly
formulated, good software is usually available to solve it. In
this article, the author uses optimum design software supported
by a genetic algorithm for undergraduate students.

Figure 1 shows the formulation procedure for design
optimisation problems involving the translation of a descriptive
statement of the problem into a well defined mathematical
statement.

Figure 1: The formulation procedure for design optimisation
problems.

An optimum design course supported by the particle swarm optimisation algorithm for
undergraduate students

Wen-Jye Shyr

National Changhua University of Education

Changhua, Taiwan

ABSTRACT: An optimum design course is being taught to undergraduate students as a basic discipline in engineering and
technology education. Optimum design aims primarily at determining the best possible combination of solutions used as design
parameters to maximise or minimise an optimisation problem. The development of conventional optimum approaches has
dramatically influenced modern teaching technologies. In this article, the author proposes the particle swarm optimisation algorithm
for use in an optimum design course. An intensive course on optimum design is supported by the particle swarm optimisation
algorithm for undergraduate students. A new concept, combining the particle swarm optimisation algorithm with conventional
material, is introduced. Upon completion of this course, students can explain the basic concepts and terminologies associated with
particle swarm optimisation. Students can also utilise relevant software on the particle swarm optimisation algorithm in order to
solve optimum design problems. Three words can summarise the main features of the proposed approach: faster, cheaper
and simpler.

 184

The detailed formulation procedure steps are as follows:

• Step 1: Project/problem statement: The formulation process

begins by developing a descriptive statement for the
project/problem. This is usually performed by the project
sponsor or leader. The statement describes the overall
objectives of the project and the requirements to be met;

• Step 2: Data and information collection: To develop a
mathematical formulation of the problem, students need to
gather the material properties, performance requirements,
resource limits and other relevant information. Some of
the design data and expressions may depend upon design
variables that are identified in the next step;

• Step 3: Identification/definition of design variables: The
next step in the formulation process is to identify a set of
variables that describes the system, called the design
variables. These design variables should be independent
of each other as much as possible;

• Step 4: Identification of a criterion to be optimised: There
can be many feasible designs for a system and some are
better than others. Criteria are necessary to compare
different designs for the same problem solution. The
criterion must be a scalar function whose numerical value
can be obtained once a design is specified. Such a
criterion is usually called an objective function for the
optimum design problem, which needs to be maximised or
minimised depending on the problem’s requirements;

• Step 5: Identification of constraints: All restrictions placed
on a design are collectively called constraints. The final step
in the formulation process is to identify all constraints and
develop expressions for them. All of these and other
constraints must depend on the design variables, since only
then do their values change with different trial designs [4].

PARTICLE SWARM OPTIMISATION ALGORITHM

The particle swarm optimisation (PSO) algorithm is a recently
invented high performance optimiser that possesses several
highly desirable attributes, including the fact that the basic
algorithm is very easy to understand and implement. Particle
swarm optimisation is a population-based stochastic optimisation
technique that was developed by Drs Eberhart and Kennedy in
1995. This concept was inspired by the social behaviour of
birds flocking or fish schooling [5][6].

Particle swarm optimisation shares many similarities with
evolutionary computation techniques, such as genetic algorithms.
The system is initialised with a population of random solutions
and searches for optima by updating generations. However,
unlike genetic algorithms, particle swarm optimisation has no
evolution operators like crossover and mutation. In PSO, the
potential solutions, called particles, fly through the problem
space following the current optimum particles. Each particle keeps
track of its coordinates in the problem space, which are associated
with the best solution (fitness) it has achieved so far (the fitness
value is also stored). This value is called pbest. Another best value
that is tracked by the particle swarm optimiser is the best value
obtained so far by any particle among the neighbours of that
particle. This location is called lbest. When a particle considers
the population as its topological neighbours, the best value is a
global best and is called gbest. The particle swarm optimisation
concept consists of, at each time step, changing the velocity of
(accelerating) each particle towards its pbest and lbest locations
(local version of PSO). Acceleration is weighted by a random
term, with separate random numbers being generated for
acceleration towards pbest and lbest locations [7].

IMPLEMENTATION OF THE PARTICLE SWARM
OPTIMISATION ALGORITHM

As stated before, the particle swarm optimisation (PSO)
algorithm simulates the behaviour of flocking birds. Imagine
the following scenario: a group of birds are randomly searching
for food in an area. There is only one piece of food in the area
being searched. None of the birds knows where the food is;
however, they do know how far away the food is in each search
iteration. What is the best strategy for finding the food? An
effective strategy is to follow the bird nearest the food.

Particle swarm optimisation was learned from this scenario and
used to solve optimisation problems. In PSO, each single
solution is a bird in the search space and is called a particle.
All of the particles have fitness values that are evaluated by
the fitness function to be optimised. Each particle has
velocities that direct particle flight. The particles fly through
the problem space following the paths of current optimum
particles.

In PSO, instead of using genetic operators, each particle
(individual) adjusts its flight according to its own flight
experience and the experience of its companions. Each particle
is treated as a point in a D-dimensional space. The ith particle
is represented as XI = (xi1,xi2,…, xiD). The best previous
position (the position giving the best fitness value) for the ith
particle is recorded and represented as PI = (pi1,pi2,…, piD). The
index of the best particle among all the particles in the
population is represented by the symbol g. The rate of position
change (velocity) for particle i is represented as VI = (vi1,vi2,…,
viD). The particles are manipulated according to the following
equations:

vid = w * vid + c1 * rand () * (pid – xid) + c2 * Rand () * (pgd –xid) (1)

xid = xid + vid (2)

where c1 and c2 are two positive constants, c1 and c2 are usually
c1 =c2 =2, rand() and Rand() are two random functions in the
range [0, 1], and w is the inertia weight. Equation (1) is used to
calculate the particle’s new velocity according to its previous
velocity and the distances from its current position from its
own best experience (position) and the group’s best experience.
The particle then flies towards a new position according to
equation (2).

The performance of each particle is measured according to a
predefined fitness function related to the problem to be solved.
The inertia weight w is employed to control the impact of the
previous history of velocities on the current velocity. This
influences the trade-off between global (wide-ranging) and
local (nearby) exploration abilities of the flying points. A larger
inertia weight w facilitates global exploration (searching new
areas) while a smaller inertia weight tends to facilitate local
exploration to fine-tune the current search area. A suitable
selection of the inertia weight w can provide a balance between
global and local exploration abilities and thus require fewer
iterations to find the optimum.

In this article, an analysis of the impact of this inertia weight,
together with the maximum velocity allowed on particle swarm
optimisation performance, is given, followed by experiments
that illustrate the analysis and provide some insights into
optimal selection of the inertia weight and the maximum
velocity allowed.

The pseudo code of the procedure is as follows:

 185

For each particle
Initialise particle
END
Do
For each particle
Calculate fitness value
If the fitness value is better than the best fitness value

(pBest) in history set current value as the new pBest
End
Choose the particle with the best fitness value of all

the particles as the gBest
For each particle
Calculate particle velocity according equation (1)
Update particle position according equation (2)
End
While maximum iterations or minimum error criteria

is not attained

Particles’ velocities on each dimension are clamped to a
maximum velocity Vmax. If the sum of accelerations would
cause the velocity on that dimension to exceed Vmax, which is
a parameter specified by the user, the velocity on that
dimension is then limited to Vmax.

THE TEACHING METHOD

The lectures are held in a optimum design laboratory. The
teacher explains the concepts. Examples of the particle swarm
optimisation algorithm are executed and projected
demonstrating the behaviour of different optimum design
problems. Time is left for students to run some examples with
different parameters realising an interactive learning process.

The optimum design laboratory serves active problem solving
and is tightly attached to the theoretical material. Each student
works on his/her own computer and solves the optimum design
problems by himself/herself. The teacher sets up the problem
and provides guidance. Students develop particle swarm
optimisation algorithm programs or combine programs from
given software. The results are then evaluated. Additional
programs are also provided. The examination is held in the
optimum design laboratory and consists of solving an optimum
problem assigned by the teacher. The solution is accepted only
if the program works correctly.

DEMONSTRATION PROVIDES A BETTER
UNDERSTANDING

To verify particle swarm optimisation algorithm performance,
three optimal design objective functions are considered. These
are detailed below.

Example 1: Simple Evaluation Function

Equation (3) is a simple evaluation function for the particle
swarm optimisation (PSO) algorithm as follows:

() 2
2

2
1 xxxf += (3)

where]2,1[][max1min,1 −=xx , and]2,1[][max2min,2 −=xx .
The genetic algorithm (GA) is used to evaluate the
optimisation problem in [8]. The evaluation function is the
driving force behind the GA. The evaluation function is called
from the GA to determine the fitness of each solution string
generated during the search. A simple example evaluation
function is described in ref. [8], as follows:

;

,1,
2

2
2

1 xxval

parametersxEvalgaDemoxvalfunction

+=

= ⎟
⎠
⎞⎜

⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ (4)

To run the ga using this test function, either of the following
function calls from MATLAB should be used:

[]
[] ;'',21;21

'1',21;21
2

2
2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛

+−−=

−−=

xxgabstX

EvalgaDemogabstX (5)

where gaDemo1Eval.m is contains the evaluation function as
given above. The defining parameters in [8] are as follows:
population size=20, probability of crossover=0.6, probability of
mutation=0.005.

The parameters created for particle swarm optimisation (PSO)
algorithm are list in Table 1. The simulation of search space via
genetic algorithm is depicted in Figure 1. Figure 2 presents the
fitness function performance via the PSO algorithm.

Table 1: The parameters created for the PSO algorithm.

Particle swarm optimisation (PSO) algorithm
Population size 20
Initial inertia weight 0.9
Final inertia weight 0.2
Iterations 50

0 5 10 15 20 25 30 35 40 45 50
7.5

7.55

7.6

7.65

7.7

7.75

7.8

7.85

7.9

7.95

8

Generations

f(
x)

Figure 1: Fitness variation in GA (example 1).

0 5 10 15 20 25 30 35 40 45 50
6.5

7

7.5

8

Generations

f(
x)

PSO: 2 dimensional prob search, Gbestval=8

Figure 2: Fitness function performance via PSO (example 1).

Table 2 provides a set of results for the evaluation function
being optimised. Each algorithm is executed until the
maximum value is found. As can be seen from Table 2, both of

 186

the algorithms perform well at finding the optimal solution.
Therefore, in terms of the metric for solution quality, there
seems little to distinguish between the three algorithms.
However, when the number of generations is taken into
account, there are significant differences in the required
number of iterations to obtain the solution. The PSO algorithm
is shown to converge faster for function optimisation. Also,
when comparing Figure 1 with Figure 2, the PSA algorithm
achieves faster convergence than the genetic algorithm.

Table 2: Comparison of particle swarm optimisation (PSO)
algorithm and genetic algorithm (GA).

Fitness f(x) x1 x2 Optimal
Value

Function GA PSO GA PSO GA PSO

Simple evaluation
function 8 8 2 2 2 2

Example 2: The Problem of Optimal Design

The genetic algorithm was used for the design optimisation
problem in Lindfield and Penny [9]. The objective function of
engineering design problems is described below.

A manufacturer wishes to produce a wall mounting container
that consists of a hemisphere surmounted by a cylinder of fixed
height. The height of the cylinder is fixed, but the common
radius of the cylinder and hemisphere may vary between two
and four. The manufacturer wishes to identify the radius value
that maximises the container volume. This optimisation
problem can be formulated by taking r as the common radius
of the cylinder and hemisphere and h as the height of the
cylinder. Taking h=2 units leads to the objective function in
equation (6) as follows:

()

.42

2**23
3**2

≤≤

+=

rwhere

rrvMaximize ππ (6)

The defining parameters using the genetic algorithm in
Lindfield and Penny are as follows: population size=10,
probability of crossover=0.6, probability of mutation=0.005
[9]. The simulation results in the genetic algorithm are depicted
as follows: a common radius of the cylinder r is equal to
3.8667 and the objective function v is equal to 215.0202. The
above genetic algorithm shows the algorithm for the design of
optimisation problems, but there exists premature convergence
and long convergence times. Figure 3 shows the objection
function performance via the PSO algorithm. The simulation
results in the PSO algorithm are depicted as follows: common
radius of the cylinder r is equal to four and the objective
function v is equal to 234.5723.

Comparing the result in Figure 3 with the genetic algorithm,
the PSO algorithm achieves faster convergence than that
proposed in Lindfield and Penny [9]. The good performance
obtained by the PSO algorithm shows improved behaviour over
that employed in the genetic algorithm. The PSO algorithm is
also shown to converge faster for function optimisation.

CONCLUSION

In this article, the particle swarm optimisation (PSO) algorithm
was applied to three numerical test functions for optimal
design. The PSO algorithm obtained good performance. The

PSO algorithm also converged faster for function optimisation.
In comparing the proposed particle swarm optimisation
algorithm with the genetic algorithm, the particle swarm
optimisation algorithm presented the following advantages:

• Faster: the PSO algorithm can obtain the same quality

results in significantly fewer fitness evaluations;
• Cheaper: the PSO algorithm is intuitive and does not need

specific domain knowledge to solve these numerical
functions for optimisation;

• Simpler: while possessing similar capabilities as the
genetic algorithm, the much simpler implementation and
reduced bookkeeping of the PSO algorithm is appealing.

0 2 4 6 8 10 12 14 16 18 20
120

140

160

180

200

220

240

Generaions

O
bj

ec
tiv

e
F
un

ct
io

n

PSO: 2 dimensional prob search, Gbestval=234.5723

Figure 3: Fitness function performance via PSO.

Another reason that the particle swarm optimisation algorithm
is attractive is that there are few parameters to adjust. The
simpler the algorithm, the more people can take advantage of
it! Eventually, it is hoped that the particle swarm optimisation
approach will be helpful in optimising functions faster,
cheaper, simpler and more effectively.

REFERENCES

1. Siddall, J.N., Optimal Engineering Design: Principles and

Applications. New York: Marcel Dekker (1982).
2. Goldberg, D.E., Genetic Algorithms in Search,

Optimization and Machine Learning. Reading: Addison-
Wesley Publishing (1989).

3. Shyr, W.J. and Liao, C.W., An optimum design course
supported by a genetic algorithm for undergraduate
students. Proc. 4th Asia-Pacific Forum on Engng. and
Technology Educ., Bangkok, Thailand, 165-168 (2005).

4. Arora, J.S., Introduction to Optimum Design (2nd edn). San
Diego: Elsevier Academic Press (2004).

5. Eberhart, R. and Kennedy, J., A new optimizer using
particle swarm theory. Proc. 6th Inter. Symp. Micro
Machine and Human Science, 39-43 (1995).

6. Kennedy, J. and Eberhart, R., Particle swarm optimization.
Proc. IEEE Inter. Conf. on Neural Networks, 4, Perth,
Australia, 1942-1948 (1995).

7. Kennedy, J. and Eberhart, R., Swarm Intelligence. San
Francisco: Morgan Kaufmann (2001).

8. Christopher, R.H., Jeffery, A.J. and Michael, G.K., A
Genetic Algorithm for Function Optimization: a
MATLAB Implementation. North Carolina State
University, IE TR 95-09, USA (1995).

9. Lindfield, G. and Penny, J., Numerical Methods Using
MATLAB. Upper Saddle River: Prentice-Hall (1995).

